CloudWatcher Sky Temperature Correction Model

The basic approach to determine sky temperature is simply subtracting the ambient temperature from the infrared measure temperature, as in:

 $T_{sky} = T_s - T_a$

where T_{sky} = Corrected Sky Temperature (°C) T_s = Infrared Sky Measured Temperature (°C) T_a = Ambient temperature (°C)

This simple approach, however, requires frequent changes to the limits - that is, the resulting cloud detection temperature is not the same as the weather changes along the year.

To improve on this, the CloudWatcher has a polynomial model to adjust the correction value depending on the ambient temperature, with different weights, given by:

 $T_{d} = (K1 / 100) * (T_{a} - K2 / 10) + (K3 / 100) * (Exp (K4 / 1000*T_{a})) ^ (K5 / 100) + T_{67}$

where T_d = Correction value (°C)

 T_a = Ambient temperature (°C)

K1, **K2**, **K3**, **K4**, **K5**, **K6** and **K7** are the coefficients defined in the *Device* section of the *Setup* TAB, or Solo configuration page T₆₇ (cold weather factor) calculation is shown below

Exp(n) = e (the base of natural logarithms) raised to the power of **n**. $A^b = a$ raised to the power of **b**

The corrected sky temperature (T_{sky}) is then given by:

 $T_{sky} = T_s - T_d$

where T_{sky} = Corrected Sky Temperature (°C) T_s = Infrared Sky Measured Temperature (°C)

T_d = Correction value (°C)

Computing the sky temperature this way, and after proper calibration, makes it possible to have accurate detection along a wide temperature range.

1

$\label{eq:calculation of T_{67}(cold weather) term} \\ If Abs((K2 / 10 - T_a)) < 1 Then \\ T_{67} = $Sgn(K6) * $Sgn(T_a - K2 / 10) * Abs((K2 / 10 - T_a))$ \\ Else \\ T_{67} = $K6 / 10 * $Sgn(T_a - K2 / 10) * (Log(Abs((K2 / 10 - T_a))) / Log(10) + K7 / 100)$ \\ \end{cases}$

End If

where Sgn(x) = function that returns the sign of x (or 0 if K6 is 0) Log(x) = function that returns the natural logarithm of x Abs(x) = function that returns the absolute value of x

Important

In all calculations the values of the temperatures are in degrees Celsius.

Please note

Leaving K1=100, K2, K3... K7 = 0 results in the simplified $T_{sky} = T_s - T_a$

Leaving all K factors at 0, the result is the raw measured IR, that is T_{sky} = T_s