CloudWatcher Sky Temperature Correction Model

The basic approach to determine sky temperature is simply subtracting the ambient temperature from the infrared measure temperature, as in:

```
\(\mathrm{T}_{\text {sky }}=\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{a}}\)
where \(\mathrm{T}_{\text {sky }}=\) Corrected Sky Temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(\mathbf{T}_{\mathbf{s}}=\) Infrared Sky Measured Temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(\mathrm{T}_{\mathrm{a}}=\) Ambient temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
```

This simple approach, however, requires frequent changes to the limits - that is, the resulting cloud detection temperature is not the same as the weather changes along the year.

To improve on this, the CloudWatcher has a polynomial model to adjust the correction value depending on the ambient temperature, with different weights, given by:

```
\(T_{d}=(\mathbf{K 1} / 100){ }^{*}\left(T_{a}-\mathbf{K 2} / \mathbf{1 0}\right)+(\mathbf{K} 3 / 100){ }^{*}\left(\operatorname{Exp}\left(\mathbf{K} 4 / 1000^{*} T_{a}\right)\right)^{\wedge}(\mathbf{K} 5 / 100)+T_{67}\)
where \(\mathrm{T}_{\mathrm{d}}=\) Correction value ( \({ }^{\circ} \mathrm{C}\) )
    \(\mathrm{T}_{\mathrm{a}}=\) Ambient temperature ( \({ }^{\circ} \mathrm{C}\) )
    \(\mathbf{K 1 , ~ K 2 , ~ K 3 , ~ K 4 , ~ K 5 , ~ K 6 ~ a n d ~ K 7 ~ a r e ~ t h e ~ c o e f f i c i e n t s ~ d e f i n e d ~ i n ~ t h e ~}\)
    Device section of the Setup TAB, or Solo configuration page
    \(\mathrm{T}_{67}\) (cold weather factor) calculation is shown below
\(\operatorname{Exp}(\mathbf{n})=e\) (the base of natural logarithms) raised to the power of \(\mathbf{n}\).
    \(\mathbf{A}^{\wedge} \mathbf{b}=\mathbf{a}\) raised to the power of \(\mathbf{b}\)
```

The corrected sky temperature ($\mathrm{T}_{\text {sky }}$) is then given by:

$$
T_{\text {sky }}=T_{s}-T_{d}
$$

```
where \(\mathrm{T}_{\text {sky }}=\) Corrected Sky Temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(\mathrm{T}_{\mathrm{s}}=\) Infrared Sky Measured Temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(\mathrm{T}_{\mathrm{d}}=\) Correction value \(\left({ }^{\circ} \mathrm{C}\right)\)
```

Computing the sky temperature this way, and after proper calibration, makes it possible to have accurate detection along a wide temperature range.

Calculation of T_{67} (cold weather) term

If $\operatorname{Abs}\left(\left(\mathbf{K} 2 / 10-T_{a}\right)\right)<1$ Then

$$
\mathrm{T}_{67}=\operatorname{Sgn}(\mathbf{K} 6) * \operatorname{Sgn}\left(\mathrm{~T}_{\mathrm{a}}-\mathbf{K} 2 / 10\right) * \operatorname{Abs}\left(\left(\mathbf{K} 2 / 10-\mathrm{T}_{\mathrm{a}}\right)\right)
$$

Else
$\mathrm{T}_{67}=\mathbf{K} 6 / 10{ }^{*} \operatorname{Sgn}\left(\mathrm{~T}_{\mathrm{a}}-\mathbf{K} 2 / 10\right){ }^{*}\left(\log \left(\operatorname{Abs}\left(\left(\mathbf{K 2} / 10-\mathrm{T}_{\mathrm{a}}\right)\right)\right) / \log (10)+\mathbf{K} 7 /\right.$ 100)

End If
where $\operatorname{Sgn}(x)=$ function that returns the sign of x (or 0 if $K 6$ is 0)
$\log (x)=$ function that returns the natural logarithm of x $\operatorname{Abs}(x)=$ function that returns the absolute value of x

Important

In all calculations the values of the temperatures are in degrees Celsius.

Please note

Leaving $\mathrm{K} 1=100, \mathrm{~K} 2, \mathrm{~K} 3 \ldots \mathrm{~K} 7=0$ results in the simplified $\mathrm{T}_{\text {sky }}=\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{a}}$
Leaving all K factors at 0 , the result is the raw measured $I R$, that is $T_{\text {sky }}=T_{s}$

